
Advanced Design of TQ/IQT Component for H.264/AVC Based on SoPC
Validation

A. Ben Atitallah(1), H. Loukil(2) , P. Kadionik(3), N. Masmoudi(2)

(1) University of Sfax, High Institute of Electronics and Communications, BP 868, 3018 Sfax, TUNISIA
(2) University of Sfax, National School of Engineering, BP W, 3038 Sfax, TUNISIA

(3) IMS laboratory –ENSEIRB-MATMECA - University Bordeaux 1 - CNRS UMR 5218,
351 Cours de la Libération, 33 405 Talence Cedex, France

ahmed.benatitallah@isecs.rnu.tn

Abstract: - This paper presents an advanced hardware architecture for integer transform, quantization, inverse
quantization and inverse integer transform modules dedicated to the macroblock engine of the H.264/AVC video
codec standard. Our highly parallel and pipelined architecture is designed to be used for intra and inter prediction
modes in H.264/AVC. The TQ/IQT design is described in VHDL language and synthesized to Altera Stratix II
FPGA and to TSMC 0.18µm standard-cells. The throughput of the hardware architecture reaches a processing rate
up to 1070 millions of pixels per second at 171.4 MHz when mapped to standard-cells. In addition, a system on a
programmable chip (SoPC) implementation and validation of the proposed design as an IP core is presented using
the embedded Altera development board.

Key-Words: - H.264/AVC, video coding, FPGA, SoPC.

1. Introduction
The H.264/AVC standard , known as MPEG-4 part 10
[1, 2], achieves significant improvements over the
previous standards such as H.263 [3] and MPEG-4 [4]
simple profile in terms of compression rates [5]. The
H.264/AVC encoder includes several blocks such as
Motion Estimation and Motion Compensation
(ME/MC), Intra prediction, Transform and
Quantization (TQ), Inverse Quantization and
Transform (IQT) and entropy coder. Fig. 1 shows the
H.264 encoder scheme that is a hybrid encoder similar
to previous standards [1].

Fig. 1 The H.264 encoder scheme

A coded video sequence in H.264/AVC consists of a
sequence of coded pictures. Each picture is divided
into MacroBlocks (MB) of 16x16 pixels. Each MB

performs intra and inter prediction mode to find the
best predictor in the spatial and temporal domains.
There are two kinds of intra prediction modes in
H.264. One is intra 4x4 prediction and the other is the
intra 16x16 prediction. The inter prediction is
implemented by motion estimation prediction on
several reference frames. The residual MB is then
obtained by subtracting predictor from the original.
The residual MB is transformed using an integer
transform, and the transform coefficients are quantized
followed by zigzag ordering and entropy coding. For
more details, interested readers can refer to [6, 7, 8] for
a quick and thorough study.
For coding the residual data block into inter or intra
4x4 prediction mode, the TQ/IQT component is
composed by Integer Cosine Transform (ICT),
Quantization (Q), Inverse Quantization (IQ) and
Inverse ICT (IICT). But in the intra 16x16 prediction
mode, the TQ/IQT component uses both 4x4 ICT and
Hadamard transforms with a quantization of the
transformed Hadamard coefficients. The different types
of prediction modes make the implementation of the
control flow more complex. In literature, there are
several papers [9, 10, 11, 12] discussing hardware
implementation of the transform and quantization
block only. But few works [13] describe a VLSI design
with all the parts of the TQ/IQT component for
different types of the prediction modes.

Entropy
Coding

Scaling & Inv.
Transform

Motion-
Compensation

Control
Data

Quant.
Transf.

Motion
Data

Intra/Inte

Coder
Contr

Decode
r

Motion
Estimation

Transform/
Scal./Quan-

Input
Video
Signal

Split into
Macroblocks

16x16
pixels

 Intra-frame
Prediction

De-
blocking

Output
Video
Signal

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 211 Issue 7, Volume 11, July 2012

In order to reduce complexity and to improve
performances of the H.264/AVC video algorithm, we
focus in this paper on the development on a customized
and optimized fast hardware module for the TQ/IQT
component that can be integrated and evaluated into
the form of a hardware IP block (Intellectual Property)
with the other H.264/AVC blocks in a system on a
programmable chip (SoPC). The main idea of our IP
block is to exploit advantages of the parallel and
pipelined structures that can be efficiently implemented
in hardware using VHDL (VHSIC Hardware
Description Language) language.
The rest of the paper is organized as follows: section 2
presents an overview of the H.264 TQ/IQT algorithm.
Section 3 describes the proposed TQ/IQT design in
detail and shows the implementation results and the
comparison with previous works. The performance
evaluations of the TQ/IQT component under the Altera
system on a programmable chip (SoPC) is presented in
section 4. Finally, section 5 concludes the paper.

2. Overview of The H.264 Transform
and The Quantization Algorithms
A more detailed flow of the TQ/IQT component is
presented in Fig. 2. The input to the forward transform
algorithm is a 4x4 block of residual data obtained by
dividing the residual MB into sixteen 4x4 blocks as
shown in Fig. 3. From Fig. 3, we can see that there are
three different transforms used in H.264/AVC [1], one
for all 4x4 residual data, another 4x4 luminance DC
coefficients of the MB that are coded in intra 16x16
mode, and the last one for 2x2 DC chrominance.

Fig. 2 Block diagram of TQ/IQT component

The transform and quantization algorithms process the
residual blocks according to the prediction mode and
send the resulting data to the entropy coding and
reconstruction process in order to obtain a reference
block for the next block. In this section, we present the
theory of the different blocks constituting the TQ/IQT
component.

Fig. 3 Processing order of blocks in a macroblock

2.1 4x4 Integer Transform Algorithm
In recent years, there are many researchers working to
design and develop the integer transform and integer
DCT (Discrete Cosine Transform) for video coding.
The DCT has been widely used in image and video
coding standards like the popular 8x8 DCT used in
previous standards while the H.264/AVC encoder is
based on a 4x4 Integer Cosine Transform (ICT) that
can be computed exactly with integer arithmetic in
order to avoid inverse transform mismatch problems.
There are two types of 4x4 integer transforms for the
residual coding. The first one is for luminance residual
blocks and is described by (1) [2].

TMXMY = (1)
Where the matrix X is the input 4x4 residual block
and M is specified by the following:



















−−
−−

−−
=

cbbc

aaaa

bccb

aaaa

M

With: () ()83cos21,8cos21,21 ππ === cba

Thus, (1) can be factorized in the following form [2]:

ECXCY T ⊗=)((2)
With:





















=



















−−
−−

−−
=

22

22

22

22

22

1111

22

1111

babbab

abaaba

babbab

abaaba

Eand

dd

dd
C

Where E is a matrix of scaling factors. The symbol

⊗ means that each component of TCXC is
multiplied by the corresponding coefficient inE . To
reduce hardware implementation of the transform, the
constant d is approximated by 0.5 and the constant b

by 52 . The final forward transform becomes [2]:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 212 Issue 7, Volume 11, July 2012

f
T
ff EXCCY ⊗=)((3)

Where:





















=



















−−
−−

−−
=

4242

22

4242

22

1221

1111

2112

1111

22

22

22

22

babbab

abaaba

babbab

abaaba

EandC ff

So, the scaling matrix fE can be incorporated into the

quantization process. Then T
ff XCC becomes the core

of a 2-D integer forward transform without
multiplications. In fact, the fC is the transform matrix

of the 1-D forward transform and contains only 4
coefficients, 1, -1, 2 and -2 that can be implemented by
shift and addition operations. The fast implementation
for the 1-D forward transform is shown Fig. 4.

Fig. 4 Fast implementation of 4x4 ICT transform

The inverse transform is very similar to the forward
transform and the complexity is the same. The
coefficient of 1-D inverse transform iC is given by (4).



















−−
−−

−−
=

5.0111

115.01

115.01

5.0111

iC
 (4)

The other kind of transform is Hadamard Transform
(HT). It is applied to the luminance DC terms in 16x16
intra prediction mode. The Hadamard transform is
defined by (5).

T
ff XHHY = (5)

With:



















−−
−−

−−
=

1111

1111

1111

1111

fH

The Hadamard transform matrix is very similar to the
forward transform matrix. The difference is to replace
the coefficient 2 by 1 in the transform matrix.
Therefore, the fast implementation for 1-D Hadamard
transform is given in Fig. 5. The Inverse Hadamard
Transform (IHT) is the same as the forward Hadamard
transform because the transform matrix is symmetric.

Fig. 5 Fast implementation of 4x4 Hadamard transform

2.2 4x4 Quantization Algorithm
The quantization is a significant source of compression
in the encoded bit stream. Quantization takes
advantage of the low sensitivity of the eye to
reconstruction errors related to high spatial frequencies
as opposed to those related to low frequencies [14].
Quick high frequency changes can often not be seen
and may be discarded. Slow linear changes in intensity
or colour are important to the eye. Therefore, the basic
idea of the quantization is to suppress many of the
nonzero transformed coefficients corresponding to high
frequency components. In H.264/AVC, there are two
types of quantization algorithm for the 4x4 integer
transform. The first one is for the transformed
coefficients of luminance residual block. The AC
Quantization Operation (ACQ) is shown in (6) [2].

)(
QStep

PF
YijroundZij = (6)

Where, ijY is the coefficient after integer core

transformation, PF is the scaling factor of integer
transform, QStep is the quantization step size and ijZ

is the coefficient after quantization. To simplify the
arithmetic, the quantization stated in (6) can be
rewritten as (7) and PF/QStep is implemented as a
multiplication by a MF factor (Multiplication Factor)
and a right-shift register to avoid division operations.

)
2

(
qbits
MF

YijroundZij = (7)

Where:

Qstep

PFMF
qbits

=
2

 (8)

)6/(15 QPfloorqbits += (9)
In H.264/AVC, QStep can be varied from 0.625 to 224
and is controlled by a Quantization Parameter (QP).
There are 52 quantization parameter values from 0 to
51. These values are arranged so that an increase of 1
in QP means an increase of QStep by approximately
12 % [2].

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 213 Issue 7, Volume 11, July 2012

Table 1. MF Multiplication Factor in H.264/AVC
QP Positions

(0,0),(2,0),(0,2),(2,2)
Positions
(1,1),(1,3),(3,1),(3,3) Other positions

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

The MF value depends on QP and the position (i,j) of
the element in the matrix as shown in Table 1. The MF
factor remains unchanged for QP>5 that can be
calculated by using (10).

6%5 QPQPQP MFMF => = (10)

Then (7) can be represented by using integer arithmetic
[2] as:

() qbitsfMFYZ ijij >>+= . (11)

Where f is a parameter used to avoid rounding errors. It
depends on prediction type of the block and QP.

After calculation of ijZ , the sign of theijY is added to

obtain ijZ :

)()(ijij YsignZsign = (12)

The Inverse of AC Quantization (IACQ) is done by
using the following equation:

64... PFQStepZY ijij = (13)

Where ijZ is the quantized coefficient, ijY is a scaled

coefficient, PF is the prescaling factor for the inverse
transform and the factor 64 is used to avoid rounding
errors. We can write (13) as:

()6/2.. QPfloor
ijijij VZY = (14)

ijV is specified in the standard as shown in Table 2.

Table 2. Multiplication Factor V in H.264/AVC

QP Positions
(0,0),(2,0),(0,2),(2,2)

Positions
(1,1),(1,3),(3,1),(3,3) Other positions

0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

The other type of quantization is for DC coefficients of
4x4 Hadamard transform. The DC Quantization (DCQ)
is shown in 15.

() 12.)0,0(+>>+= qbitsfMFYZ ijij (15)

)()(ijij YsignZsign =

Where)0,0(MF is the multiplication factor for position

(0,0) in Table 1. The inverse of DC quantization
(IDCQ) is defined as:
If QP≥12 then:

26/
2.

)0,0(
.

+
=






QPfloor

V
ij

Z
ij

Y (16)

Otherwise:

()()6/2
6/1

2
)0,0(

. QPfloor
QPfloor

V
ij

Z
ij

Y −>>






 −
+=








Where)0,0(V is the multiplication factor for position

(0,0) in Table 2.

3. Hardware Architecture of The H.264
Transform and Quantization
This section presents an efficient parallel hardware
architecture for H.264 TQ/IQT component in order to
support large spectrum of real-time applications such
as HDTV (High Definition TV) 720p (1280x720) and
1080i (1920x1088). This component is composed
essentially by two parts: the transform (ICT, IICT, HT
and IHT) part and the quantization (ACQ, IACQ, DCQ
and IDCQ) part. The hardware architecture and the
organization of the different blocks that compose these
two parts affect the TQ/IQT component performances
and the silicon area cost. In this section, we present
then the hardware design of the internal modules and
of the whole TQ/IQT component, the synthesized
results in to Altera Stratix II FPGA and to TSMC
0.18µm standard-cells and the comparison with the
previous works.

3.1 Implementation of the 4x4 Integer
Transform
There are several papers discussing on the VLSI
implementation of 2-D integer transform for H.264.
Thus, implementation of fast 2-D transform can be
classified into two categories: row/column
decomposition approach [9] and direct two-
dimensional approach [15]. However, the
implementation of the direct 2-D transform requires
much more effort and large silicon area than that for
the row/column approach [16] that is used to
implement 2-D transform.
The proposed architecture for the 2-D integer
transform uses 4x4 parallel input data. A block
diagram of this architecture is shown in Fig. 6. This
diagram contains two 1-D transform units and a control
unit that provides clocks and others control signals
such as the Done_ICT output flag signal to indicate
that outputs coefficients are valid.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 214 Issue 7, Volume 11, July 2012

Fig. 6 Architecture of the 2-D integer transform

The 1-D transform unit is presented by Fig. 7 and is
implemented by using the fast data-flow algorithm like
Fig. 4 and 5. This fast algorithm uses only addition,
subtraction and shift operations. Thus, the 1-D
transform is designed to process 16 pixels/cycle by
computing the transform of four lines in parallel.





















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

xxxx

xxxx

xxxx

xxxx





















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

yyyy

yyyy

yyyy

yyyy




















3,0

2,0

1,0

0,0

x

x

x

x





















3,1

2,1

1,1

0,1

x

x

x

x





















3,2

2,2

1,2

0,2

x

x

x

x





















3,3

2,3

1,3

0,3

x

x

x

x





















0,3

0,2

0,1

0,0

y

y

y

y





















1,3

1,2

1,1

1,0

y

y

y

y





















2,3

2,2

2,1

2,0

y

y

y

y





















3,3

3,2

3,1

3,0

y

y

y

y

Fig. 7 Architecture of the 1-D integer transform

In Fig. 6, the 16 x 16-bit residual inputs data of the
transform is captured from the outside environment
through residual_0..15 signal. Moreover, after intra or
motion estimation prediction, the dynamic range of the
inputs data is 9 bits, i.e. from -256 to +255. Because
we have used operations like additions, subtractions
and shifts, the dynamic range of the pixel data is
extended to a 16-bit value [17]. So, the 4x4 residual
data are processed in parallel by the transform block.
This block consists of two cascaded 1-D transform
units, i.e. one 1-D row transform and one 1-D column
transform. The separable nature of the 2-D transform
given by (1) is exploited by computing the 1-D
transform on the rows and then the 1-D transform on
the columns. In fact, the first transform calculates

XCV f= and the second calculates T
fVCY= . The

first 1-D transform computes the row of fC and

column of X while the second 1-D computes the row

of V and column of T
fC where fC is the transform

matrix, X is the input coefficient, V is the intermediate
row/column matrix and Y contains the transformed
coefficients.

3.2 Implementation of the 4x4 Quantization
The purpose to design a hardware quantization module
is to reduce computation complexity in order to
calculate the quantization coefficients in real-time. It
allows this module to be used as a computing resource
module by the other modules of the H.264 encoder.
The hardware quantization components for the AC and
DC coefficients rescale the transformed coefficients
according to the quantization step as defined by (11)
and (15). The proposed architecture for 4x4 AC and
DC quantization is shown in Fig. 8.

Fig. 8 Architecture of AC and DC quantization module

It contains sixteen Processing Elements (PE), the
register bank for storing the input pixels noted
input_0..15 and two read only memories (ROM) for
storing QBIT and F values noted ROM_F and
ROM_QBIT, respectively. The AC and DC
quantization modules receive the sixteen 16 bits
transformed coefficients in the same time and quantize
these coefficients according to the QP factor in four
clock cycles.
The main component of the quantization architecture is
the PE which shown in Fig. 9. It is composed by four
basic components and a control unit and is designed to
quantize one transformed coefficient every four clock
cycles. An integer multiplier assures the multiplication
of AC and DC transformed coefficients with the
corresponding MF(i,j) factor that is stored into the
ROM_MF memory as shown in Table 1 and selected
according to the QP modulo 6 value. The adder makes
the sum of value given by the multiplier with the F
parameter given by the ROM_F memory. A shifter
register shifts the result set by the adder by qbits
(varies 15 to 23 according to the value of QP). The
multiplier, the adder, the shifter and the ROM_MF
memory modules take one clock cycle each one. The
control unit receives input control signals (Reset, Clk,
Start_Quant) and generates all internal control signals
for each stage and the output flag (Done_Quant) signal
to indicate that the quantized coefficient is valid.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 215 Issue 7, Volume 11, July 2012

Fig. 9 PE module of the quantization architecture

The quantization of the 4x4 AC and DC transformed
coefficients are made by using the PE module. In fact,
we can discuss on two methods to implement the
quantization architecture:
- For a speed optimization, we use 16 PE modules

that are executed in parallel and they are structured
in a 4x4 array as depicted in Fig. 8. The role of the
(i,j) module (3,0 ≤≤ ji) is to calculate the (i,j)
quantized coefficients. To accomplish this task, the
quantization architecture fetches sixteen
transformed coefficients and dispatches them to the
sixteen modules. Therefore, this architecture
receives each block of the 4x4 transformed blocks
in four cycles and provides the quantized
coefficients of the MB corresponding to the PE
module with 64 clock cycles.

- For a silicon area optimization, we can call
sequentially 16 times the PE module to calculate the
4x4 quantized coefficients. In this case, the
quantization architecture processed all 4x4
transformed blocks with 1024 clock cycles. We can
conclude that the second method is about 16 times
slower than the first one, but it also requires
considerably less silicon area. We use then the first
method for a hardware implementation of the AC
and DC quantization architecture.

The inverse AC and DC quantization components
share the same architecture design with AC and DC
quantization presented in Fig. 8. The differences
between the architecture for the quantization and for
the inverse quantization are presented in the PE
module. In fact, for computing the inverse AC
quantization values respecting (14), we have just
eliminated the addition block from the PE module

depicted according to Fig. 9. On the contrary, to
implement (16) the inverse DC quantization, we use
the same PE module of the DC quantization. But the
shifter block is implicated when QP<12. The AC and
DC inverse quantization architecture is designed to
provide sixteen coefficients every three and four clock
cycles, respectively.

3.3 Design architecture of the TQ/IQT
component
The block diagram of the proposed hardware
architecture for H.264 TQ/IQT component is shown in
Fig. 10 which contains the transform and quantization
parts and the control unit. Our proposed architecture is
used to code and decode the residual coefficients
obtained by intra 4x4, intra 16x16 and inter prediction
modules. The TQ/IQT architecture has a 16 x 16-bit
inputs and outputs data. It receives in parallel the
sixteen residual coefficients each 2 clock cycles and
provides two types of data that are obtained by the TQ
module, one for coding the entropy and the other one
for the IQT module in order to reconstruct the residual
pixels. Our architecture could process sixteen
coefficients per N clock cycles and depends on the
prediction mode. The valid_mode signal has a 2-bit
length and can select the prediction mode (“00”: intra
4x4, “01”: intra 16x16 and “10”: inter).
The TQ/IQT processing cycle reduction is a crucial
point in implementing the H.264/AVC. So, in the
proposed hardware architecture, we have used sixteen
parallel input data sets and treated sixteen data sets
simultaneously in order to reduce clock cycles for
TQ/IQT computation. For implementing the
quantization and inverse quantization modules, we can
see from Fig. 10 that sixteen quantization and inverse
quantization modules are used in parallel for fast
processing. In Fig. 10, the FIFO (First In First Out)
memory and DC coefficient register files are used to
store 240 x 23-bit dequantized coefficients and 16 x
16-bit DC coefficients respectively. The MUX block
selects the dequantized coefficient form the FIFO and
the IDCQ modules when “Valid_mode=01” and from
the IACQ module when “Valid_mode=00 or 10” and
transfers these coefficients to the inverse 2-D
transformation module. The control unit receives input
control signals (Clk, Reset, Start, Valid_mode) and
generates all internal control signals for each stage and
output control signals the communication with other
hardware modules.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 216 Issue 7, Volume 11, July 2012





















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

xxxx

xxxx

xxxx

xxxx





















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

yyyy

yyyy

yyyy

yyyy

Fig. 10 Hardware architecture for the TQ/IQT component

Referring to Fig. 11, when the prediction mode is intra
4x4, 11 clock cycles are needed to perform one 4x4
block. In fact, the data processing is made in
successively for each block by the following steps: (1)
the block is processed by the 4x4 ICT in two clock
cycles, (2) and (3), the ACQ and IACQ are performed
in four and three clock cycles, respectively and (4) the
4x4 IICT is applied in two clock cycles. After, only the
border samples of each 4x4 block are sent to the
prediction module and the other samples are discarded.
In this case, the intra prediction must be idle only
during eleven clock cycles. Then, 176 clock cycles are
needed to process one MB (11*16=176 cycles) if intra
4x4 mode is chosen. But, we can note that a pipelined
processing is applied on the inter mode for data
independency.

IN
T
R
A
 P
re
d
ic
ti
o
n
 B
lo
c
k
1

IN
T
R
A
 P
re
d
ic
ti
o
n
 B
lo
c
k
2

Fig. 11. Hardware cycles of the TQ/IQT module in

intra 4x4 mode

As shown in Fig. 12, eleven cycles are required for
processing the first block of the MB and two cycles for
the other fifteen blocks. So, 41 cycles are needed for
the TQ/IQT component to reconstruct one MB when

the inter mode is selected. To reduce the number of
processing cycles for one MB into intra 4x4 mode to
41 cycles, we can choose the method that gives data
independence [18].

Fig. 12 Hardware cycles of the TQ/IQT module in inter

mode

Referring to Fig. 10, when the intra 16x16 mode is
chosen, the transformation method uses both 4x4
integer and Hadamard transforms. In fact, for coding a
MB in intra 16x16 mode, sixteen blocks have to be 4x4
integer transformed with AC quantization and
dequantization. The FIFO is used to store the AC
dequantized coefficients until the reconstruction of the
4x4 DC values are obtained from a 4x4 ICT transform
and reconstructed by using the HT, DCQ, IHT and
IDCQ modules. Finally, the AC and DC coefficients
are combined to apply the IICT module. Fig. 13 shows
that 77 clock cycles are needed to process one MB by
the TQ/IQT component in intra 16x16 mode. Indeed,
the ICT, ACQ and IACQ modules are used together in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 217 Issue 7, Volume 11, July 2012

pipelined mode and take 39 cycles. In fact, the
reconstruction of the DC coefficient requires twelve
cycles. One cycle is needed to read data from the FIFO.
The IICT module takes 32 cycles.

Fig. 13 Hardware cycles of the TQ/IQT module in intra

16x16 mode

3.4 Synthesis Results

The designed architecture for the TQ/IQT was
described in VHDL language. The architecture was
validated using Mentor Graphics ModelSim and
synthesized considering two different technologies:
Altera Stratix II EP2S60F1020 FPGA circuit [19] with
speed 3 grade and TSMC 0.18µm standard-cells [20]
technology. The synthesis targeted the Altera FPGA
was made using the Altera Quartus II tool and the
standard-cells version was generated using the
Loenardo Spectrum synthesis tool.
Table 3 shows the hardware cost in terms of ALUTs
(Adaptive Look-Up Tables) and DLRs (Dedicated
Logic Registers) count for FPGA and gate count for
standard-cells, operation frequency and data
throughput rate (Mpixels/s) of the each proposed
internal module and the whole TQ/IQT proposed
component.

Table 3. H.264/AVC TQ/IQT Component Synthesis Results

Module
Altera EP2S60F1020C3 TSMC 0.18µm

of
LUTs

of
DLRs

Freq.
(MHz)

Throughput
(Mpixels/s)

of
Gates

Freq.
(MHz)

Throughput
(Mpixels/s)

ICT 1024 514 480.31 3842 8716 258.8 2070
IICT 1504 936 405.0 3240 13199 195.9 1567
HT 1088 506 418.0 3344 8570 241.0 1928
IHT 1056 516 436.87 3495 8482 258.5 2068
ACQ 4071 292 221,09 884 18765 180.4 722
IACQ 1974 387 269.4 1437 9988 243.6 1299
DCQ 4009 276 211.15 885 19524 180.6 722
IDCQ 5419 388 230.36 921 23677 222.6 890

TQ/IQT: Inter
21413

5363

152.67

953
116437

171.4

1070
TQ/IQT: Intra 16x16 508 570
TQ/IQT: Intra 4x4 222 249

In Table 3, we can find that the proposed TQ/IQT
design achieved 171.4 MHz as maximum operation
frequency when mapped to standard-cells. With this
operating clock frequency, the data throughput of our
proposed architecture can achieve up to 570 Mpixels/s,
249 Mpixels/s and 1,070 Mpixels/s that depends on the
prediction mode, intra 16x16, intra 4x4 and inter
modes, respectively. Furthermore, Table 3 also shows
that the proposed design uses 116437 gates when the
TSMC 0.18µm technology is adopted.
The most important result presented in Table 3 is the
maxima throughput of the internal TQ/IQT component
that, in all case, is sufficient to operate in H.264/AVC
encoder for HDTV. Considering a HDTV 1080i
(1920x1088@30Hz) video format and a downsampling
relation of 4:2:0 then the required throughput is 94
Mpixels/s. The TSMC 0.18µm standard-cell design of
the TQ/IQT component is able in worse case, i.e.,
when the intra 4x4 prediction mode is always chosen,
to reach a processing rate of 249 Mpixels/s which is

outperforming the HDTV requirement. The FPGA
design can reach a throughput superior to 222
Mpixels/s, also surpassing the performance demanded
by H.264/AVC encoder. So, aiming the target
application, appropriate frequency can be chosen for
the specific application in order to achieve lower power
consumption.
E. Comparison with Previous Works
The main purpose of the proposed TQ/IQT architecture
is to optimize the hardware resource by using same
hardware architecture for the intra 16x16, intra 4x4 and
inter prediction modes in H.264/AVC and increase the
data throughput rate by exploiting the advantages of
the parallel and pipelined structures.
In this section, we will compare the performance of the
each proposed internal module and the whole TQ/IQT
design with other exiting design found in literature
which is always a difficult work due to that different
designs might adopt different design considerations,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 218 Issue 7, Volume 11, July 2012

diverse technologies, various supply voltages and so
on.
Considering the hardware efficiency on a design, we
adopt the performance index of Data Throughput rate
per Unit Area (denoted as DTUA) defined as the ratio
of data throughput rate over hardware cost (in terms of
gate count). When adopting the DTUA as the
comparison index, the higher the DTUA index is, the
more efficient the design is.
Table 4 shows the performance comparisons of the
high efficiency proposed TQ/IQT design with reported
data from the existed designs [9, 10, 11, 12, 13] in
terms of gate count for standard-cells, data throughput
rate (Mpixels/s) and DTUA (pixels/s/gate). In fact, the
designs [9] and [10] use the R-C decomposition
method to implement the H.264/AVC 2-D integer
transform and were designed in a SMIC 0.35µm and
UMC 0.18µm technology, respectively. Moreover,
according to the Table 4, our proposed ICT design is
better than the corresponding designs in [9] and [10] in
terms of 16.04 and 2.58 times higher data throughput
rate as well as 6.48 and 4.05 times (DTUA index) more
efficient than the designs [9] and [10], respectively.
The design [11] proposes the implementation only of
the integer transform and quantization modules for
H.264 on FPGA technology. The results shown in
Table 4 indicate, when the intra 4x4 prediction is
selected (worse case), that the whole proposed TQ/IQT

design owns 3.6 times higher data throughput rate and
30.57 times more efficient in terms of the DTUA index
than the design [11].
The design presented in [12] realizes also just
implementation of the transform and quantization
modules which were designed in a TSMC 0.18µm
technology. The DTUA index of the proposed ICT and
ACQ designs shown in Table 4 indicate that they are
1.09 and 1.41 times more efficient than the design [12],
respectively with similar throughput.
The last design analyzed was presented in [13] which
achieves the low cost hardware implementation of
H.264 forward transform and quantization and inverse
transform and quantization in UMC 0.18µm
technology and reaches an operation frequency of 210
MHz. This design can be used for different H.264
prediction modes. Furthermore, considering the worst
case, i.e., when intra 4x4 prediction mode is chosen,
and according to the reported data in the design [13],
the whole proposed TQ/IQT design provides 11.31
times higher data throughput rate on the other hand the
DTUA index in Table 4 tell that is 13.37 times more
efficient than the corresponding design in [13] when
our TQ/IQT design operates at 171.4 MHz.
Thus, our proposed TQ/IQT design can increase the
data throughput rate with less hardware resource
compared to the previous works.

Table 4. Performance Comparisons of the High Efficiency Proposed TQ/IQT Design with Reported Data from the

Existed Designs

Module
[9] SMIC 0.35µm [10] UMC 0.18µm [11] FPGA

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

ICT 3524 129 36.61 K 13651 800 58.6 K 1057000 69 0.07 K
ACQ - - - - - -
IICT - - - - - - - - -
IACQ - - - - - - - - -

HT - - - - - - - - -
DCQ - - - - - - - - -
IHT - - - - - - - - -

IDCQ - - - - - - - - -
TQ/IQT: Inter

3524

129

36.61 k

13651

800

58.6 K

1057000

69

0.07 K TQ/IQT: Intra 16x16
TQ/IQT: Intra 4x4

Module
[12] TSMC 0.18µm [13] UMC 0.18µm Proposed TSMC 0.18µm

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

of
Gates

Throughput
(Mpixels/s)

DTUA (pixels
/s/gate)

ICT 11727 2552 217.62 K x - - 8716 2070 237.54 K
ACQ 39892 1085 27.2 K x - - 18765 722 38.45 K
IICT - - - x - - 13199 1567 118.74 K
IACQ - - - x - - 9988 1299 130.07 K

HT - - - x - - 8570 1928 224.97 K
DCQ - - - x - - 19524 722 37.0 K
IHT - - - x - - 8482 2068 243.81 K

IDCQ - - - x - - 23677 890 37.6 K
TQ/IQT: Inter

47762

644

13.48 K

130505

22

0.16 K

116437
1070 9.19 K

TQ/IQT: Intra 16x16 570 4.9 K
TQ/IQT: Intra 4x4 249 2.14 K

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 219 Issue 7, Volume 11, July 2012

4. Validation of The TQ/IQT
Component in The HW/SW Context

4.1 Overview
With increasing of FPGA device densities, audacious
challenges become feasible and the integration of
embedded SoPC (System on Programmable Chip)
systems is significantly improved [21]. Furthermore,
SoPC became a reality with softcore processor, which
is a microprocessor fully described in software, usually
in a VHDL, and capable to be synthesized in
programmable hardware, such as FPGA. Softcore
processors can be easily customized to the needs of a
specific target application (e.g. multimedia embedded
systems). The two major FPGA manufacturers provide
commercial softcore processors. Xilinx offers its
MicroBlaze processor [22], while Altera has Nios and
Nios II processors [23]. The benefit of a softcore
processor is to add a micro-programmed logic that
introduces more flexibility. A HW/SW approach is
then possible and a particular functionality can be
developed in software for flexibility and upgrading
completed with hardware IP blocks (Intellectual
Property) for cost reduction and performances.

4.2 The SoPC embedded platform
For SW implementation of image and video algorithms,
the use of a microprocessor is required. The use of
additional HW for optimization contributes to the
overall performance of the algorithm. For the highest
degree of HW/SW integration, customization and
configurability, a softcore processor was used.
To verify functionality and performances of our
TQ/IQT coprocessor, we have integrated the core into
a SoPC platform using an Altera Nios II development
board. The heart of the board is the Altera Stratix II
EP2S60F672C3 FPGA circuit that was chosen for its
great capability for integrating both hardware and
software into one codesign flow [24]. The main
components of the SoPC embedded platform are
illustrated in Fig. 14. The proposed embedded SoPC
platform shown in Fig. 14 consists of three major parts,
including the NIOS II softcore processor, the TQ/IQT
coprocessor and the peripheral interface modules. All
these modules are connected to the Avalon Bus that is
a configurable bus architecture that is auto generated
for interconnecting peripherals. The Altera NIOS II
softcore processor (FAST version) is configured as
follows: a 32-bit scalar RISC processor with Harvard
architecture, 6 stage pipeline, 1-way direct-mapped
64KB data cache, 1-way direct-mapped 64KB

instruction cache and can gives up to 200 MIPS. The
peripheral I/O modules are interfaces for 16MB flash,
16MB SDRAM and a serial UART port.
In this work, we use the µClinux as an operating
system to control the functionality of the design. Linux
for embedded systems (or embedded Linux) gives us
several benefits: It is ported to most of processors with
or without Memory Management Unit (MMU). A
Linux port is available for the NIOS-II softcore. Most
of classical peripherals are ported to Linux. A file
system is available for data storage. A network
connectivity based on Ethernet protocols is well suited
for data recovering.

Fig. 14 Our SoPC embedded platform

Fig. 14 presents communications between the NIOS II
processor and the TQ/IQT coprocessor. The NIOS II
processor executes a software program that is loaded
into the SDRAM memory. This software is written in
C language and is used to communicate with the PC
host through the UART serial port. In fact, the software
program receives data through the UART port and
checks if the TQ/IQT coprocessor is not busy with the
waitrequest signal. In this case, our coprocessor loads
the residual coefficients of the MB through the 32-bit
data_in signal and activates the data processing.
During the calculation step, the coprocessor is busy
and can not be accessed. At the end of processing, the
waitrequest signal has a low level state and the
coprocessor provides the processed coefficients
through the 32-bit data_out signal. Indeed, in the
purpose of using the 32-bit bus size, each two 16-bit
residual and processed coefficients must be processed
as a 32-bit long word in order to decrease the memory
access. The configuration and status register control the
state of the TQ/IQT coprocessor.
The SoPC embedded platform is designed for
accelerating computation for the H.264/AVC encoder
and can be easily modified or extended for different
video applications. It is synthesized with Quartus II
tools for FPGA target and it uses 65 % of the ALUTs,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 220 Issue 7, Volume 11, July 2012

45 % of the RAM blocks, 50 % of the DSP blocks and
27 % of the IOBs. The platform architecture is running
at 140 MHz or 7.14 ns for one clock cycle.

4.3 Performance Evaluation
For the FPGA HW/SW (Hardware/Software)
performance evaluation, we have developed an
optimized C language reference model of H.264/AVC
encoder compatible with the NIOS II system. We have
compared the output results of our C reference model
with the JM 10.1 model [25] and we have confirmed
the correctness of our model.
The H.264/AVC reference model is used to measure
correctness of our TQ/IQT coprocessor in HW/SW
context. For all experiments, the CIF 4:2:0 (352x288
pixels) test sequences coded at 30 frames/s. We focus
on the following standard video test sequences:
“Foreman”, “News”, “Claire”, and “Tb420”. These test
sequences have different movement and camera
operations. The average peak signal-to-noise ratio
(PSNR) is used as a measure of objective quality.
Considering the performances of the SoPC embedded
platform, we have measured the execution times of the
TQ/IOT part in SW and HW/SW by using the NIOS II
timer “high_res_timer” which can be used for the
cycle-accurate time-frame estimation of a focused part
of the SW code execution. The SW implementation of
the TQ/IQT part in the SoPC embedded system takes
about 1677µs which is an average time between the
different video test sequences to compute one MB by
the TQ/IQT part at 140 MHz in worse case i.e., when
the intra 4x4 prediction mode is always chosen. On the
other hand, the TQ/IQT coprocessor takes about 1.25µs
and 47µs which is an average time to calculate the
same MB by the HW and HW/SW solutions,
respectively. From these results, we can conclude that
the FPGA HW/SW solution is estimated up to 35 times
faster than the SW solution. But, it is slower than the
HW solution because the transfers data between the
TQ/IQT coprocessor and SDRAM memory is very
significant and can be improved by using DMA (Direct
Memory Access) transfers.
Finally, Fig. 15 presents the original and the two
reconstructed (one from SW, the other from HW/SW)
of the 12th frame of the test video sequences. We can
see from Fig. 15 that the HW/SW solution has a same
image quality compared to the SW solution since we
work in an integer environment. These results show an
efficient and a high performance hardware architecture
of the proposed TQ/IQT component. In fact, the
parallel and pipelined hardware design can increase the
data throughput with same image quality compared to
the SW solution.

5. Conclusion
In this paper, the proposed TQ/IQT architecture is used
to code and decode the residual coefficients obtained
by the intra and inter prediction modes. It can operate
at a maximum frequency of 171.4 MHz in TSMC
0.18µm standard-cells implementation. We have
presented a modern implementation of the complex
video application such as H.264/AVC codec in
HW/SW codesign context. In fact, The TQ/IQT
component has been integrated as an IP core into a
SoPC platform for improving the system performances.
We have estimated a 35 time improvement in coding
speed at 140 MHz compared to the all software
implementation with same image quality. The
performances of our SoPC platform may be improved
with another FPGA platform having higher operating
frequency or by design ASIC circuit.

References:
[1] Draft ITU-T Recommendation and Final Draft

International Standard of Joint Video
Specification, ITU-T Rec. H.264 and ISO/IEC
14496-10 AVC,2003.

[2] I. E. G. Richardson, “H.264 and MPEG 4
Video Compression-Video Coding for Next
Generation Multimedia”, New York: Wiley,
2003.

[3] Video Coding for Low Bit Rate
Communication, ITU-T Recommendation
H.263, Feb. 1998.

[4] Information Technology—Coding of Audio-
Visual Objects—Part 2: Visual, ISO/IEC
14496-2, 1999.

[5] A. Joch, F. Kossentini, H. Schwarz, T.
Wiegand, and G. J. Sullivan, “Performance
Comparison of Video Coding Standards Using
Lagragian Coder Control,” in Proc. IEEE Int.
Conf. Image Processing (ICIP’02), 2002, pp.
501–504.

[6] T. Wiegand, G. J. Sullivan, G. Bjøntegaard,
and A. Luthra, “Overview of the H.264/AVC
Video Coding Standard”, IEEE Trans. On
Circuits and Systems for Video Technology
vol. 13, no. 7, pp. 560–576, July 2003.

[7] J. Ostermann, J. Bormans, P. List, D. Marpe,
M. Narroschke, F. Pereira, T. Stockhammer,
and T. Wedi, “Video Coding with H.264/AVC;
Tools, Performance, and Complexity,” IEEE
Circuits Syst. Mag., vol. 4, no. 1, pp. 7–28, 1Q,
2004.

[8] A. Puri, X. Chen, and A. Luthra, “Video
Coding using the H.264/MPEG-4 AVC
Compression Standard,” in Signal Process.:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 221 Issue 7, Volume 11, July 2012

Image Commun., Oct. 2004, vol. 19, no. 9, pp.
793–849.

[9] L. Ling-zhi, Q. Lin, R. Meng-tian, J. Li, “A 2-
D Forward/Inverse Integer Transform
Processor of H.264 Based on Highly-Parallel
Architecture”, in Proc IEEE IWSOC’04, pp.
158-161, July 2004.

[10] Y. Li, Y. He and S. MEI, “A Highly Parallel
Joint VLSI Architecture for Transforms in
H.264/AVC”, Journal of Signal Processing
Systems, vol.50, PP. 19-32, January 2008.

[11] N. Keshaveni, S. Ramachandran and K. S.
Gurumurthy, “Design and Implementation of
Integer Transform and Quantization Processor
for H.264 Encoder on FPGA”, in Proc IEEE
ACT’09, pp. 646-649, December 2009.

[12] R. Kordasiewicz and S. Shirani, “On Hardware
Implementation of DCT and Quantization
Blocks for H.264/AVC”, Journal of VLSI
Signal Processing, vol.47, pp. 189-199, 2007.

[13] O. Tasdizen and I. Hamzaoglu, “A High
Performance and Low Cost Hardware
Architecture for Transform and Quantization
Algorithm” in Proc EUSIPCO’05, September
2005, Turkey.

[14] J. Johnston, N. Jayant, and R. Safranek, “Signal
Compression Based on Models of Human
Perception”, Proc. IEEE, vol. 81, pp. 1385-
1422, Oct. 1993.

[15] C. P. Fan, “Fast 2-Dimensional 4x4 Forward
Integer Transform Implementation for
H.264/AVC”, IEEE Trans. On Circuits and
Systems, vol.53, no.3, pp. 174-177, March
2006.

[16] TC. Y. Lu, K. A. Wen, “On the Design of
Selective Coefficient DCT Module”, IEEE
Trans. On Circuits and Systems Video
Technology, vol. 8, pp. 143–146, Dec. 2002.

[17] H.S. Malvar, A. Hallapuro, M. Karczewicz, L.
Kerofsky, “Low-complexity Transform and
Quantization in H.264/AVC”, IEEE Trans. On
Circuits and Systems Video Technology, vol.
13, pp. 598–603, July. 2003.

[18] Y. L. Lee, K. H. Han, D. G. Sim, and J. Seo,
“Adaptive Scanning for H.264/AVC Intra
Coding” ETRI Journal, vol. 28, no. 5, October
2006.

[19] Stratix II device, http://www.altera.com/
[20] Artisan Components. TSMC 0.18µm 1.8-Volt

SAGE-XTM Standard Cell Library Databook,
2001.

[21] R. Tessier and W. Burleson, “Reconfigurable
Computing for Digital Signal Processing: a
Survey,” Journal of VLSI Signal Processing 28,

7-27, 2001
[22] Microblaze Integrated Development

Environment
http://www.xilinx.com/technology/embedded.h
tm

[23] Nios II Integrated Development Environment
http://www.altera.com/products/ip/processors/n
ios2/ni2-index.html

[24] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P.
Nouel, N. Masmoudi, H. Levi “An FPGA
Implementation of HW/SW Codesign
Architecture for H.263 Video Coding”, AEU -
International Journal of Electronics and
Communications, vol. 61, Issue 9, 1 October
2007, Pages 605-620.

[25] JVT H.264 Reference Software Version
JM10.1,
http://iphome.hhi.de/suehring/tml/download/ol
d_jm/

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 222 Issue 7, Volume 11, July 2012

Foreman.cif

PSNR-Y = 38.34 dB PSNR-Y = 38.34 dB

Mobile.cif

PSNR-Y = 36.63 dB PSNR-Y = 36.63 dB

News.cif PSNR-Y = 40.07 dB PSNR-Y = 40.07 dB

Tb420.cif

PSNR-Y = 37.35 dB PSNR-Y = 37.35 dB

(a) (b) (c)

Fig. 15 (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the 12th frame of the test
video sequences

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 223 Issue 7, Volume 11, July 2012

