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Abstract: - This paper presents an advanced hardware architecture for integer transform, quantization, inverse 
quantization and inverse integer transform modules dedicated to the macroblock engine of the H.264/AVC video 
codec standard. Our highly parallel and pipelined architecture is designed to be used for intra and inter prediction 
modes in H.264/AVC. The TQ/IQT design is described in VHDL language and synthesized to Altera Stratix II 
FPGA and to TSMC 0.18µm standard-cells. The throughput of the hardware architecture reaches a processing rate 
up to 1070 millions of pixels per second at 171.4 MHz when mapped to standard-cells. In addition, a system on a 
programmable chip (SoPC) implementation and validation of the proposed design as an IP core is presented using 
the embedded Altera development board.  
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1. Introduction 
The H.264/AVC  standard , known as MPEG-4 part 10 
[1, 2], achieves significant improvements over the 
previous standards such as H.263 [3] and MPEG-4 [4] 
simple profile in terms of compression rates [5]. The 
H.264/AVC encoder includes several blocks such as 
Motion Estimation and Motion Compensation 
(ME/MC), Intra prediction, Transform and 
Quantization (TQ), Inverse Quantization and 
Transform (IQT) and entropy coder. Fig. 1 shows the 
H.264 encoder scheme that is a hybrid encoder similar 
to previous standards [1]. 
 

 
Fig. 1 The H.264 encoder scheme 

 
A coded video sequence in H.264/AVC consists of a 
sequence of coded pictures. Each picture is divided 
into MacroBlocks (MB) of 16x16 pixels. Each MB 

performs intra and inter prediction mode to find the 
best predictor in the spatial and temporal domains. 
There are two kinds of intra prediction modes in 
H.264. One is intra 4x4 prediction and the other is the 
intra 16x16 prediction. The inter prediction is 
implemented by motion estimation prediction on 
several reference frames. The residual MB is then 
obtained by subtracting predictor from the original. 
The residual MB is transformed using an integer 
transform, and the transform coefficients are quantized 
followed by zigzag ordering and entropy coding. For 
more details, interested readers can refer to [6, 7, 8] for 
a quick and thorough study. 
For coding the residual data block into inter or intra 
4x4 prediction mode, the TQ/IQT component is 
composed by Integer Cosine Transform (ICT), 
Quantization (Q), Inverse Quantization (IQ) and 
Inverse ICT (IICT). But in the intra 16x16 prediction 
mode, the TQ/IQT component uses both 4x4 ICT and 
Hadamard transforms with a quantization of the 
transformed Hadamard coefficients. The different types 
of prediction modes make the implementation of the 
control flow more complex. In literature, there are 
several papers [9, 10, 11, 12] discussing hardware 
implementation of the transform and quantization 
block only. But few works [13] describe a VLSI design 
with all the parts of the TQ/IQT component for 
different types of the prediction modes.  
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In order to reduce complexity and to improve 
performances of the H.264/AVC video algorithm, we 
focus in this paper on the development on a customized 
and optimized fast hardware module for the TQ/IQT 
component that can be integrated and evaluated into 
the form of a hardware IP block (Intellectual Property) 
with the other H.264/AVC blocks in a system on a 
programmable chip (SoPC). The main idea of our IP 
block is to exploit advantages of the parallel and 
pipelined structures that can be efficiently implemented 
in hardware using VHDL (VHSIC Hardware 
Description Language) language.  
The rest of the paper is organized as follows: section 2 
presents an overview of the H.264 TQ/IQT algorithm. 
Section 3 describes the proposed TQ/IQT design in 
detail and shows the implementation results and the 
comparison with previous works. The performance 
evaluations of the TQ/IQT component under the Altera 
system on a programmable chip (SoPC) is presented in 
section 4. Finally, section 5 concludes the paper. 
 
 

2. Overview of The H.264 Transform 
and The Quantization Algorithms 
A more detailed flow of the TQ/IQT component is 
presented in Fig. 2. The input to the forward transform 
algorithm is a 4x4 block of residual data obtained by 
dividing the residual MB into sixteen 4x4 blocks as 
shown in Fig. 3. From Fig. 3, we can see that there are 
three different transforms used in H.264/AVC [1], one 
for all 4x4 residual data, another 4x4 luminance DC 
coefficients of the MB that are coded in intra 16x16 
mode, and the last one for 2x2 DC chrominance.  
 

Fig. 2 Block diagram of TQ/IQT component 
 
The transform and quantization algorithms process the 
residual blocks according to the prediction mode and 
send the resulting data to the entropy coding and 
reconstruction process in order to obtain a reference 
block for the next block. In this section, we present the 
theory of the different blocks constituting the TQ/IQT 
component. 
 

 
Fig. 3 Processing order of blocks in a macroblock 

 
 
2.1 4x4 Integer Transform Algorithm 
In recent years, there are many researchers working to 
design and develop the integer transform and integer 
DCT (Discrete Cosine Transform) for video coding. 
The DCT has been widely used in image and video 
coding standards like the popular 8x8 DCT used in 
previous standards while the H.264/AVC encoder is 
based on a 4x4 Integer Cosine Transform (ICT) that 
can be computed exactly with  integer arithmetic in 
order to avoid inverse transform mismatch problems.  
There are two types of 4x4 integer transforms for the 
residual coding. The first one is for luminance residual 
blocks and is described by (1) [2]. 

TMXMY =                                                             (1) 
Where the matrix X  is the input 4x4 residual block 
and M  is specified by the following: 
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Thus, (1) can be factorized in the following form [2]: 
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Where E  is a matrix of scaling factors. The symbol 

⊗  means that each component of  TCXC  is 
multiplied by the corresponding coefficient inE . To 
reduce hardware implementation of the transform, the 
constant d is approximated by 0.5 and the constant b 

by 52 . The final forward transform becomes [2]:     
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Where: 
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So, the scaling matrix fE  can be incorporated into the 

quantization process. Then T
ff XCC  becomes the core 

of a 2-D integer forward transform without 
multiplications. In fact, the fC  is the transform matrix 

of the 1-D forward transform and contains only 4 
coefficients, 1, -1, 2 and -2 that can be implemented by 
shift and addition operations. The fast implementation 
for the 1-D forward transform is shown Fig. 4. 
 

 
Fig. 4 Fast implementation of 4x4 ICT transform 

 
The inverse transform is very similar to the forward 
transform and the complexity is the same. The 
coefficient of 1-D inverse transform iC  is given by (4). 
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The other kind of transform is Hadamard Transform 
(HT). It is applied to the luminance DC terms in 16x16 
intra prediction mode. The Hadamard transform is 
defined by (5). 

T
ff XHHY =                                                           (5) 

With: 
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The Hadamard transform matrix is very similar to the 
forward transform matrix. The difference is to replace 
the coefficient 2 by 1 in the transform matrix. 
Therefore, the fast implementation for 1-D Hadamard 
transform is given in Fig. 5. The Inverse Hadamard 
Transform (IHT) is the same as the forward Hadamard 
transform because the transform matrix is symmetric. 

 
Fig. 5 Fast implementation of 4x4 Hadamard transform 

 
 

2.2 4x4 Quantization Algorithm 
The quantization is a significant source of compression 
in the encoded bit stream. Quantization takes 
advantage of the low sensitivity of the eye to 
reconstruction errors related to high spatial frequencies 
as opposed to those related to low frequencies [14]. 
Quick high frequency changes can often not be seen 
and may be discarded. Slow linear changes in intensity 
or colour are important to the eye. Therefore, the basic 
idea of the quantization is to suppress many of the 
nonzero transformed coefficients corresponding to high 
frequency components. In H.264/AVC, there are two 
types of quantization algorithm for the 4x4 integer 
transform. The first one is for the transformed 
coefficients of luminance residual block. The AC 
Quantization Operation (ACQ) is shown in (6) [2]. 

)(
QStep

PF
YijroundZij =                                       (6) 

Where, ijY  is the coefficient after integer core 

transformation, PF is the scaling factor of integer 
transform, QStep is the quantization step size and ijZ  

is the coefficient after quantization. To simplify the 
arithmetic, the quantization stated in (6) can be 
rewritten as (7) and PF/QStep is implemented as a 
multiplication by a MF factor (Multiplication Factor) 
and a right-shift register to avoid division operations.  

)
2

(
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YijroundZij =                                        (7) 

Where: 
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2

                                                           (8) 

)6/(15 QPfloorqbits +=                                        (9) 
In H.264/AVC, QStep can be varied from 0.625 to 224 
and is controlled by a Quantization Parameter (QP). 
There are 52 quantization parameter values from 0 to 
51. These values are arranged so that an increase of 1 
in QP means an increase of QStep by approximately 
12 % [2]. 
 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS A. Ben Atitallah, H. Loukil, P. Kadionik, N. Masmoudi

E-ISSN: 2224-266X 213 Issue 7, Volume 11, July 2012



Table 1. MF Multiplication Factor in H.264/AVC 
QP Positions 

(0,0),(2,0),(0,2),(2,2) 
Positions 
(1,1),(1,3),(3,1),(3,3) Other positions 

0 13107 5243 8066 
1 11916 4660 7490 
2 10082 4194 6554 
3 9362 3647 5825 
4 8192 3355 5243 
5 7282 2893 4559 

 
The MF value depends on QP and the position (i,j) of 
the element in the matrix as shown in Table 1. The MF 
factor remains unchanged for QP>5 that can be 
calculated by using (10). 

6%5 QPQPQP MFMF => =                                           (10) 

Then (7) can be represented by using integer arithmetic 
[2] as: 

( ) qbitsfMFYZ ijij >>+= .                                   (11) 

Where f is a parameter used to avoid rounding errors. It 
depends on prediction type of the block and QP. 

After calculation of ijZ , the sign of theijY  is added to 

obtain ijZ : 

)()( ijij YsignZsign =                                                (12) 

The Inverse of AC Quantization (IACQ) is done by 
using the following equation: 
 

64... PFQStepZY ijij =                                         (13) 

Where ijZ is the quantized coefficient, ijY is a scaled 

coefficient, PF is the prescaling factor for the inverse 
transform and the factor 64 is used to avoid rounding 
errors. We can write (13) as: 

( )6/2.. QPfloor
ijijij VZY =                                          (14) 

ijV is specified in the standard as shown in Table 2. 

 
Table 2. Multiplication Factor V in H.264/AVC 

QP Positions 
(0,0),(2,0),(0,2),(2,2) 

Positions 
(1,1),(1,3),(3,1),(3,3) Other positions 

0 10 16 13 
1 11 18 14 
2 13 20 16 
3 14 23 18 
4 16 25 20 
5 18 29 23 

 
The other type of quantization is for DC coefficients of 
4x4 Hadamard transform. The DC Quantization (DCQ) 
is shown in 15. 

( ) 12. )0,0( +>>+= qbitsfMFYZ ijij                  (15) 
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Where )0,0(MF is the multiplication factor for position 

(0,0) in Table 1. The inverse of DC quantization 
(IDCQ) is defined as:  
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Where )0,0(V  is the multiplication factor for position 

(0,0) in Table 2. 
 
 
3. Hardware Architecture of The H.264 
Transform and Quantization  
This section presents an efficient parallel hardware 
architecture for H.264 TQ/IQT component in order to 
support large spectrum of real-time applications such 
as HDTV (High Definition TV) 720p (1280x720) and 
1080i (1920x1088). This component is composed 
essentially by two parts: the transform (ICT, IICT, HT 
and IHT) part and the quantization (ACQ, IACQ, DCQ 
and IDCQ) part. The hardware architecture and the 
organization of the different blocks that compose these 
two parts affect the TQ/IQT component performances 
and the silicon area cost. In this section, we present 
then the hardware design of the internal modules and 
of the whole TQ/IQT component, the synthesized 
results in to Altera Stratix II FPGA and to TSMC 
0.18µm standard-cells and the comparison with the 
previous works. 
 
 
3.1 Implementation of the 4x4 Integer 
Transform 
There are several papers discussing on the VLSI 
implementation of 2-D integer transform for H.264. 
Thus, implementation of fast 2-D transform can be 
classified into two categories: row/column 
decomposition approach [9] and direct two-
dimensional approach [15]. However, the 
implementation of the direct 2-D transform requires 
much more effort and large silicon area than that for 
the row/column approach [16] that is used to 
implement 2-D transform. 
The proposed architecture for the 2-D integer 
transform uses 4x4 parallel input data. A block 
diagram of this architecture is shown in Fig. 6. This 
diagram contains two 1-D transform units and a control 
unit that provides clocks and others control signals 
such as the Done_ICT output flag signal to indicate 
that outputs coefficients are valid. 
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Fig. 6 Architecture of the 2-D integer transform 

 
The 1-D transform unit is presented by Fig. 7 and is 
implemented by using the fast data-flow algorithm like 
Fig. 4 and 5. This fast algorithm uses only addition, 
subtraction and shift operations. Thus, the 1-D 
transform is designed to process 16 pixels/cycle by 
computing the transform of four lines in parallel. 
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Fig. 7 Architecture of the 1-D integer transform 

 
In Fig. 6, the 16 x 16-bit residual inputs data of the 
transform is captured from the outside environment 
through residual_0..15 signal. Moreover, after intra or 
motion estimation prediction, the dynamic range of the 
inputs data is 9 bits, i.e. from -256 to +255. Because 
we have used operations like additions, subtractions 
and shifts, the dynamic range of the pixel data is 
extended to a 16-bit value [17].  So, the 4x4 residual 
data are processed in parallel by the transform block. 
This block consists of two cascaded 1-D transform 
units, i.e. one 1-D row transform and one 1-D column 
transform. The separable nature of the 2-D transform 
given by (1) is exploited by computing the 1-D 
transform on the rows and then the 1-D transform on 
the columns. In fact, the first transform calculates 

XCV f=  and the second calculates T
fVCY= . The 

first 1-D transform computes the row of fC  and 

column of X  while the second 1-D computes the row 

of V  and column of T
fC  where fC is the transform 

matrix, X is the input coefficient, V is the intermediate 
row/column matrix and Y contains the transformed 
coefficients.  

3.2 Implementation of the 4x4 Quantization  
The purpose to design a hardware quantization module 
is to reduce computation complexity in order to 
calculate the quantization coefficients in real-time. It 
allows this module to be used as a computing resource 
module by the other modules of the H.264 encoder. 
The hardware quantization components for the AC and 
DC coefficients rescale the transformed coefficients 
according to the quantization step as defined by (11) 
and (15). The proposed architecture for 4x4 AC and 
DC quantization is shown in Fig. 8. 

  
Fig. 8 Architecture of AC and DC quantization module 

 
It contains sixteen Processing Elements (PE), the 
register bank for storing the input pixels noted 
input_0..15 and two read only memories (ROM) for 
storing QBIT and F values noted ROM_F and 
ROM_QBIT, respectively. The AC and DC 
quantization modules receive the sixteen 16 bits 
transformed coefficients in the same time and quantize 
these coefficients according to the QP factor in four 
clock cycles. 
The main component of the quantization architecture is 
the PE which shown in Fig. 9. It is composed by four 
basic components and a control unit and is designed to 
quantize one transformed coefficient every four clock 
cycles. An integer multiplier assures the multiplication 
of AC and DC transformed coefficients with the 
corresponding MF(i,j) factor that is stored into the 
ROM_MF memory as shown in Table 1 and selected 
according to the QP modulo 6 value. The adder makes 
the sum of value given by the multiplier with the F 
parameter given by the ROM_F memory. A shifter 
register shifts the result set by the adder by qbits 
(varies 15 to 23 according to the value of QP). The 
multiplier, the adder, the shifter and the ROM_MF 
memory modules take one clock cycle each one. The 
control unit receives input control signals (Reset, Clk, 
Start_Quant) and generates all internal control signals 
for each stage and the output flag (Done_Quant) signal 
to indicate that the quantized coefficient is valid.  
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Fig. 9 PE module of the quantization architecture 

 
The quantization of the 4x4 AC and DC transformed 
coefficients are made by using the PE module.  In fact, 
we can discuss on two methods to implement the 
quantization architecture:  
- For a speed optimization, we use 16 PE modules 

that are executed in parallel and they are structured 
in a 4x4 array as depicted in Fig. 8.  The role of the 
(i,j) module ( 3,0 ≤≤ ji ) is to calculate the (i,j) 
quantized coefficients. To accomplish this task, the 
quantization architecture fetches sixteen 
transformed coefficients and dispatches them to the 
sixteen modules. Therefore, this architecture 
receives each block of the 4x4 transformed blocks 
in four cycles and provides the quantized 
coefficients of the MB corresponding to the PE 
module with 64 clock cycles.  

- For a silicon area optimization, we can call 
sequentially 16 times the PE module to calculate the 
4x4 quantized coefficients.  In this case, the 
quantization architecture processed all 4x4 
transformed blocks with 1024 clock cycles. We can 
conclude that the second method is about 16 times 
slower than the first one, but it also requires 
considerably less silicon area. We use then the first 
method for a hardware implementation of the AC 
and DC quantization architecture. 

 
The inverse AC and DC quantization components 
share the same architecture design with AC and DC 
quantization presented in Fig. 8. The differences 
between the architecture for the quantization and for 
the inverse quantization are presented in the PE 
module. In fact, for computing the inverse AC 
quantization values respecting (14), we have just 
eliminated the addition block from the PE module 

depicted according to Fig. 9. On the contrary, to 
implement (16) the inverse DC quantization, we use 
the same PE module of the DC quantization. But the 
shifter block is implicated when QP<12. The AC and 
DC inverse quantization architecture is designed to 
provide sixteen coefficients every three and four clock 
cycles, respectively. 
 
 
3.3 Design architecture of the TQ/IQT 
component 
The block diagram of the proposed hardware 
architecture for H.264 TQ/IQT component is shown in 
Fig. 10 which contains the transform and quantization 
parts and the control unit. Our proposed architecture is 
used to code and decode the residual coefficients 
obtained by intra 4x4, intra 16x16 and inter prediction 
modules. The TQ/IQT architecture has a 16 x 16-bit 
inputs and outputs data. It receives in parallel the 
sixteen residual coefficients each 2 clock cycles and 
provides two types of data that are obtained by the TQ 
module, one for coding the entropy and the other one 
for the IQT module in order to reconstruct the residual 
pixels. Our architecture could process sixteen 
coefficients per N clock cycles and depends on the 
prediction mode. The valid_mode signal has a 2-bit 
length and can select the prediction mode (“00”: intra 
4x4, “01”: intra 16x16 and “10”: inter). 
The TQ/IQT processing cycle reduction is a crucial 
point in implementing the H.264/AVC. So, in the 
proposed hardware architecture, we have used sixteen 
parallel input data sets and treated sixteen data sets 
simultaneously in order to reduce clock cycles for 
TQ/IQT computation. For implementing the 
quantization and inverse quantization modules, we can 
see from Fig. 10 that sixteen quantization and inverse 
quantization modules are used in parallel for fast 
processing. In Fig. 10, the FIFO (First In First Out) 
memory and DC coefficient register files are used to 
store 240 x 23-bit dequantized coefficients and 16 x 
16-bit DC coefficients respectively. The MUX block 
selects the dequantized coefficient form the FIFO and 
the IDCQ modules when “Valid_mode=01” and from 
the IACQ module when “Valid_mode=00 or 10” and 
transfers these coefficients to the inverse 2-D 
transformation module. The control unit receives input 
control signals (Clk, Reset, Start, Valid_mode) and 
generates all internal control signals for each stage and 
output control signals the communication with other 
hardware modules.  
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Fig. 10 Hardware architecture for the TQ/IQT component 

 
Referring to Fig. 11, when the prediction mode is intra 
4x4, 11 clock cycles are needed to perform one 4x4 
block. In fact, the data processing is made in 
successively for each block by the following steps: (1) 
the block is processed by the 4x4 ICT in two clock 
cycles, (2) and (3), the ACQ and IACQ are performed 
in four and three clock cycles, respectively and (4) the 
4x4 IICT is applied in two clock cycles. After, only the 
border samples of each 4x4 block are sent to the 
prediction module and the other samples are discarded. 
In this case, the intra prediction must be idle only 
during eleven clock cycles. Then, 176 clock cycles are 
needed to process one MB (11*16=176 cycles) if intra 
4x4 mode is chosen. But, we can note that a pipelined 
processing is applied on the inter mode for data 
independency.  
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Fig. 11. Hardware cycles of the TQ/IQT module in 

intra 4x4 mode 
 
As shown in Fig. 12, eleven cycles are required for 
processing the first block of the MB and two cycles for 
the other fifteen blocks. So, 41 cycles are needed for 
the TQ/IQT component to reconstruct one MB when 

the inter mode is selected. To reduce the number of 
processing cycles for one MB into intra 4x4 mode to 
41 cycles, we can choose the method that gives data 
independence [18].   

 
Fig. 12 Hardware cycles of the TQ/IQT module in inter 

mode 
 
Referring to Fig. 10, when the intra 16x16 mode is 
chosen, the transformation method uses both 4x4 
integer and Hadamard transforms. In fact, for coding a 
MB in intra 16x16 mode, sixteen blocks have to be 4x4 
integer transformed with AC quantization and 
dequantization. The FIFO is used to store the AC 
dequantized coefficients until the reconstruction of the 
4x4 DC values are obtained from a 4x4 ICT transform 
and reconstructed by using the HT, DCQ, IHT and 
IDCQ modules. Finally, the AC and DC coefficients 
are combined to apply the IICT module. Fig. 13 shows 
that 77 clock cycles are needed to process one MB by 
the TQ/IQT component in intra 16x16 mode. Indeed, 
the ICT, ACQ and IACQ modules are used together in 
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pipelined mode and take 39 cycles. In fact, the 
reconstruction of the DC coefficient requires twelve 
cycles. One cycle is needed to read data from the FIFO. 
The IICT module takes 32 cycles.  

 
Fig. 13 Hardware cycles of the TQ/IQT module in intra 

16x16 mode 
 
 

3.4 Synthesis Results 

The designed architecture for the TQ/IQT was 
described in VHDL language. The architecture was 
validated using Mentor Graphics ModelSim and 
synthesized considering two different technologies: 
Altera Stratix II EP2S60F1020 FPGA circuit [19] with 
speed 3 grade and TSMC 0.18µm standard-cells [20] 
technology. The synthesis targeted the Altera FPGA 
was made using the Altera Quartus II tool and the 
standard-cells version was generated using the 
Loenardo Spectrum synthesis tool. 
Table 3 shows the hardware cost in terms of ALUTs 
(Adaptive Look-Up Tables) and DLRs (Dedicated 
Logic Registers) count for FPGA and gate count for 
standard-cells, operation frequency and data 
throughput rate (Mpixels/s) of the each proposed 
internal module and the whole TQ/IQT proposed 
component. 

 
Table 3. H.264/AVC TQ/IQT Component Synthesis Results 
 

Module 
Altera EP2S60F1020C3 TSMC 0.18µm 

# of 
LUTs 

# of 
DLRs 

Freq.  
(MHz)  

Throughput  
(Mpixels/s) 

# of  
Gates 

Freq.  
(MHz)  

Throughput  
(Mpixels/s) 

ICT 1024 514 480.31 3842 8716 258.8 2070 
IICT 1504 936 405.0 3240 13199 195.9 1567 
HT 1088 506 418.0 3344 8570 241.0 1928 
IHT 1056 516 436.87 3495 8482 258.5 2068 
ACQ 4071 292 221,09 884 18765 180.4 722 
IACQ 1974 387 269.4 1437 9988 243.6 1299 
DCQ 4009 276 211.15 885 19524 180.6 722 
IDCQ 5419 388 230.36 921 23677 222.6 890 

TQ/IQT: Inter  
21413 

 
5363 

 
152.67 

953  
116437 

 
171.4 

1070 
TQ/IQT: Intra 16x16 508 570 
TQ/IQT: Intra 4x4 222 249 

 
In Table 3, we can find that the proposed TQ/IQT 
design achieved 171.4 MHz as maximum operation 
frequency when mapped to standard-cells. With this 
operating clock frequency, the data throughput of our 
proposed architecture can achieve up to 570 Mpixels/s, 
249 Mpixels/s and 1,070 Mpixels/s that depends on the 
prediction mode, intra 16x16, intra 4x4 and inter 
modes, respectively. Furthermore, Table 3 also shows 
that the proposed design uses 116437 gates when the 
TSMC 0.18µm technology is adopted. 
The most important result presented in Table 3 is the 
maxima throughput of the internal TQ/IQT component 
that, in all case, is sufficient to operate in H.264/AVC 
encoder for HDTV. Considering a HDTV 1080i 
(1920x1088@30Hz) video format and a downsampling 
relation of 4:2:0 then the required throughput is 94 
Mpixels/s. The TSMC 0.18µm standard-cell design of 
the TQ/IQT component is able in worse case, i.e., 
when the intra 4x4 prediction mode is always chosen, 
to reach a processing rate of 249 Mpixels/s which is 

outperforming the HDTV requirement. The FPGA 
design can reach a throughput superior to 222 
Mpixels/s, also surpassing the performance demanded 
by H.264/AVC encoder. So, aiming the target 
application, appropriate frequency can be chosen for 
the specific application in order to achieve lower power 
consumption. 
E. Comparison with Previous Works 
The main purpose of the proposed TQ/IQT architecture 
is to optimize the hardware resource by using same 
hardware architecture for the intra 16x16, intra 4x4 and 
inter prediction modes in H.264/AVC and increase the 
data throughput rate by exploiting the advantages of 
the parallel and pipelined structures. 
In this section, we will compare the performance of the 
each proposed internal module and the whole TQ/IQT 
design with other exiting design found in literature 
which is always a difficult work due to that different 
designs might adopt different design considerations, 
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diverse technologies, various supply voltages and so 
on.  
Considering the hardware efficiency on a design, we 
adopt the performance index of Data Throughput rate 
per Unit Area (denoted as DTUA) defined as the ratio 
of data throughput rate over hardware cost (in terms of 
gate count). When adopting the DTUA as the 
comparison index, the higher the DTUA index is, the 
more efficient the design is. 
Table 4 shows the performance comparisons of the 
high efficiency proposed TQ/IQT design with reported 
data from the existed designs [9, 10, 11, 12, 13] in 
terms of gate count for standard-cells, data throughput 
rate (Mpixels/s) and DTUA (pixels/s/gate). In fact, the 
designs [9] and [10] use the R-C decomposition 
method to implement the H.264/AVC 2-D integer 
transform and were designed in a SMIC 0.35µm and 
UMC 0.18µm technology, respectively. Moreover, 
according to the Table 4, our proposed ICT design is 
better than the corresponding designs in [9] and [10] in 
terms of 16.04 and 2.58 times higher data throughput 
rate as well as 6.48 and 4.05 times (DTUA index) more 
efficient than the designs [9] and [10], respectively. 
The design [11] proposes the implementation only of 
the integer transform and quantization modules for 
H.264 on FPGA technology. The results shown in 
Table 4 indicate, when the intra 4x4 prediction is 
selected (worse case), that the whole proposed TQ/IQT 

design owns 3.6 times higher data throughput rate and 
30.57 times more efficient in terms of the DTUA index 
than the design [11].      
The design presented in [12] realizes also just 
implementation of the transform and quantization 
modules which were designed in a TSMC 0.18µm 
technology. The DTUA index of the proposed ICT and 
ACQ designs shown in Table 4 indicate that they are 
1.09 and 1.41 times more efficient than the design [12], 
respectively with similar throughput. 
The last design analyzed was presented in [13] which 
achieves the low cost hardware implementation of 
H.264 forward transform and quantization and inverse 
transform and quantization in UMC 0.18µm 
technology and reaches an operation frequency of 210 
MHz. This design can be used for different H.264 
prediction modes. Furthermore, considering the worst 
case, i.e., when intra 4x4 prediction mode is chosen, 
and according to the reported data in the design [13], 
the whole proposed TQ/IQT design provides 11.31 
times higher data throughput rate on the other hand the 
DTUA index in Table 4 tell that is 13.37 times more 
efficient than the corresponding design in [13] when 
our TQ/IQT design operates at 171.4 MHz. 
Thus, our proposed TQ/IQT design can increase the 
data throughput rate with less hardware resource 
compared to the previous works. 

 
Table 4. Performance Comparisons of the High Efficiency Proposed TQ/IQT Design with Reported Data from the 

Existed Designs  
 

Module 
[9] SMIC 0.35µm [10] UMC 0.18µm [11] FPGA 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

ICT 3524 129 36.61 K 13651 800 58.6 K 1057000 69 0.07 K 
ACQ - - - - - - 
IICT - - - - - - - - - 
IACQ - - - - - - - - - 

HT - - - - - - - - - 
DCQ - - - - - - - - - 
IHT  - - - - - - - - - 

IDCQ - - - - - - - - - 
TQ/IQT: Inter  

3524 
 

129 
 

36.61 k 
 

13651 
 

800 
 

58.6 K 
 

1057000 
 

69 
 

0.07 K TQ/IQT: Intra 16x16 
TQ/IQT: Intra 4x4 

 
 

Module 
[12] TSMC 0.18µm [13] UMC 0.18µm Proposed TSMC 0.18µm 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

# of  
Gates 

Throughput  
(Mpixels/s) 

DTUA (pixels 
/s/gate) 

ICT 11727 2552 217.62 K x - - 8716 2070 237.54 K 
ACQ 39892 1085 27.2 K x - - 18765 722 38.45 K 
IICT - - - x - - 13199 1567 118.74 K 
IACQ - - - x - - 9988 1299 130.07 K 

HT - - - x - - 8570 1928 224.97 K 
DCQ - - - x - - 19524 722 37.0 K 
IHT - - - x - - 8482 2068 243.81 K 

IDCQ - - - x - - 23677 890 37.6 K 
TQ/IQT: Inter  

47762 
 

644 
 

13.48 K 
 

130505 
 

22 
 

0.16 K 
 

116437 
1070 9.19 K 

TQ/IQT: Intra 16x16 570 4.9 K 
TQ/IQT: Intra 4x4 249 2.14 K 
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4. Validation of The TQ/IQT 
Component in The HW/SW Context 
 
 
4.1 Overview 
With increasing of FPGA device densities, audacious 
challenges become feasible and the integration of 
embedded SoPC (System on Programmable Chip) 
systems is significantly improved [21]. Furthermore, 
SoPC became a reality with softcore processor, which 
is a microprocessor fully described in software, usually 
in a VHDL, and capable to be synthesized in 
programmable hardware, such as FPGA. Softcore 
processors can be easily customized to the needs of a 
specific target application (e.g. multimedia embedded 
systems). The two major FPGA manufacturers provide 
commercial softcore processors. Xilinx offers its 
MicroBlaze processor [22], while Altera has Nios and 
Nios II processors [23]. The benefit of a softcore 
processor is to add a micro-programmed logic that 
introduces more flexibility. A HW/SW approach is 
then possible and a particular functionality can be 
developed in software for flexibility and upgrading 
completed with hardware IP blocks (Intellectual 
Property) for cost reduction and performances. 
 
 
4.2 The SoPC embedded platform 
For SW implementation of image and video algorithms, 
the use of a microprocessor is required. The use of 
additional HW for optimization contributes to the 
overall performance of the algorithm. For the highest 
degree of HW/SW integration, customization and 
configurability, a softcore processor was used.  
To verify functionality and performances of our 
TQ/IQT coprocessor, we have integrated the core into 
a SoPC platform using an Altera Nios II development 
board. The heart of the board is the Altera Stratix II 
EP2S60F672C3 FPGA circuit that was chosen for its 
great capability for integrating both hardware and 
software into one codesign flow [24]. The main 
components of the SoPC embedded platform are 
illustrated in Fig. 14. The proposed embedded SoPC 
platform shown in Fig. 14 consists of three major parts, 
including the NIOS II softcore processor, the TQ/IQT 
coprocessor and the peripheral interface modules. All 
these modules are connected to the Avalon Bus that is 
a configurable bus architecture that is auto generated 
for interconnecting peripherals. The Altera NIOS II 
softcore processor (FAST version) is configured as 
follows: a 32-bit scalar RISC processor with Harvard 
architecture, 6 stage pipeline, 1-way direct-mapped 
64KB data cache, 1-way direct-mapped 64KB 

instruction cache and can gives up to 200 MIPS. The 
peripheral I/O modules are interfaces for 16MB flash, 
16MB SDRAM and a serial UART port. 
In this work, we use the µClinux as an operating 
system to control the functionality of the design. Linux 
for embedded systems (or embedded Linux) gives us 
several benefits: It is ported to most of processors with 
or without Memory Management Unit (MMU). A 
Linux port is available for the NIOS-II softcore. Most 
of classical peripherals are ported to Linux. A file 
system is available for data storage. A network 
connectivity based on Ethernet protocols is well suited 
for data recovering.  
 

 
Fig. 14 Our SoPC embedded platform 

 
Fig. 14 presents communications between the NIOS II 
processor and the TQ/IQT coprocessor. The NIOS II 
processor executes a software program that is loaded 
into the SDRAM memory. This software is written in 
C language and is used to communicate with the PC 
host through the UART serial port. In fact, the software 
program receives data through the UART port and 
checks if the TQ/IQT coprocessor is not busy with the 
waitrequest signal. In this case, our coprocessor loads 
the residual coefficients of the MB through the 32-bit 
data_in signal and activates the data processing. 
During the calculation step, the coprocessor is busy 
and can not be accessed. At the end of processing, the 
waitrequest signal has a low level state and the 
coprocessor provides the processed coefficients 
through the 32-bit data_out signal. Indeed, in the 
purpose of using the 32-bit bus size, each two 16-bit 
residual and processed coefficients must be processed 
as a 32-bit long word in order to decrease the memory 
access. The configuration and status register control the 
state of the TQ/IQT coprocessor.  
The SoPC embedded platform is designed for 
accelerating computation for the H.264/AVC encoder 
and can be easily modified or extended for different 
video applications. It is synthesized with Quartus II 
tools for FPGA target and it uses 65 % of the ALUTs, 
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45 % of the RAM blocks, 50 % of the DSP blocks and 
27 % of the IOBs. The platform architecture is running 
at 140 MHz or 7.14 ns for one clock cycle.  
 
 
4.3 Performance Evaluation 
For the FPGA HW/SW (Hardware/Software) 
performance evaluation, we have developed an 
optimized C language reference model of H.264/AVC 
encoder compatible with the NIOS II system. We have 
compared the output results of our C reference model 
with the JM 10.1 model [25] and we have confirmed 
the correctness of our model. 
The H.264/AVC reference model is used to measure 
correctness of our TQ/IQT coprocessor in HW/SW 
context. For all experiments, the CIF 4:2:0 (352x288 
pixels) test sequences coded at 30 frames/s. We focus 
on the following standard video test sequences: 
“Foreman”, “News”, “Claire”, and “Tb420”. These test 
sequences have different movement and camera 
operations. The average peak signal-to-noise ratio 
(PSNR) is used as a measure of objective quality. 
Considering the performances of the SoPC embedded 
platform, we have measured the execution times of the 
TQ/IOT part in SW and HW/SW by using the NIOS II 
timer “high_res_timer” which can be used for the 
cycle-accurate time-frame estimation of a focused part 
of the SW code execution. The SW implementation of 
the TQ/IQT part in the SoPC embedded system takes 
about 1677µs which is an average time between the 
different video test sequences to compute one MB by 
the TQ/IQT part at 140 MHz in worse case i.e., when 
the intra 4x4 prediction mode is always chosen. On the 
other hand, the TQ/IQT coprocessor takes about 1.25µs 
and 47µs which is an average time to calculate the 
same MB by the HW and HW/SW solutions, 
respectively. From these results, we can conclude that 
the FPGA HW/SW solution is estimated up to 35 times 
faster than the SW solution. But, it is slower than the 
HW solution because the transfers data between the 
TQ/IQT coprocessor and SDRAM memory is very 
significant and can be improved by using DMA (Direct 
Memory Access) transfers. 
Finally, Fig. 15 presents the original and the two 
reconstructed (one from SW, the other from HW/SW) 
of the 12th frame of the test video sequences. We can 
see from Fig. 15 that the HW/SW solution has a same 
image quality compared to the SW solution since we 
work in an integer environment. These results show an 
efficient and a high performance hardware architecture 
of the proposed TQ/IQT component. In fact, the 
parallel and pipelined hardware design can increase the 
data throughput with same image quality compared to 
the SW solution. 

5. Conclusion 
In this paper, the proposed TQ/IQT architecture is used 
to code and decode the residual coefficients obtained 
by the intra and inter prediction modes. It can operate 
at a maximum frequency of 171.4 MHz in TSMC 
0.18µm standard-cells implementation. We have 
presented a modern implementation of the complex 
video application such as H.264/AVC codec in 
HW/SW codesign context. In fact, The TQ/IQT 
component has been integrated as an IP core into a 
SoPC platform for improving the system performances. 
We have estimated a 35 time improvement in coding 
speed at 140 MHz compared to the all software 
implementation with same image quality. The 
performances of our SoPC platform may be improved 
with another FPGA platform having higher operating 
frequency or by design ASIC circuit. 
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Fig. 15 (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the 12th frame of the test 
video sequences 
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